Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate
نویسندگان
چکیده
Under defined differentiation conditions, human embryonic stem cells (hESCs) can be directed toward a mesendoderm (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with lineage-specific G1 lengthening, a divergent ciliation pattern emerged within the first 24 hr of induced lineage specification, and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2 and thereby relieved transcriptional activation of OCT4 and NANOG. Nrf2 binds directly to upstream regions of these pluripotency genes to promote their expression and repress NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events had been initiated did neural precursor markers get expressed at day 4. Thus, we have identified a primary cilium-autophagy-Nrf2 (PAN) control axis coupled to cell-cycle progression that directs hESCs toward NE.
منابع مشابه
The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm.
In the Drosophila embryonic central nervous system, neural stem cells, called neuroblasts, acquire fates in a position-specific manner. Recent work has identified a set of genes that functions along the dorsoventral axis to enable neuroblasts that develop in different dorsoventral domains to acquire distinct fates. These genes include the evolutionarily conserved transcription factors ventral n...
متن کاملSIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells.
Human embryonic stem cells (hESCs) rely on fibroblast growth factor and Activin-Nodal signaling to maintain their pluripotency. However, Activin-Nodal signaling is also known to induce mesendoderm differentiation. The mechanisms by which Activin-Nodal signaling can achieve these contradictory functions remain unknown. Here, we demonstrate that Smad-interacting protein 1 (SIP1) limits the mesend...
متن کاملThe transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways
The neural fate commitment of pluripotent stem cells requires the repression of extrinsic inhibitory signals and the activation of intrinsic positive transcription factors. However, how these two events are integrated to ensure appropriate neural conversion remains unclear. In this study, we showed that Pou3f1 is essential for the neural differentiation of mouse embryonic stem cells (ESCs), spe...
متن کاملConserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells.
Mouse epiblast stem cells (EpiSCs) are cultured with FGF2 and Activin A, like human embryonic stem cells (hESCs), but the action of the associated pathways in EpiSCs has not been well characterized. Here, we show that activation of the Activin pathway promotes self-renewal of EpiSCs via direct activation of Nanog, whereas inhibition of this pathway induces neuroectodermal differentiation, like ...
متن کاملGenetic control of dorsoventral patterning and neuroblast specification in the Drosophila Central Nervous System.
The Drosophila embryonic Central Nervous System (CNS) develops from the ventrolateral region of the embryo, the neuroectoderm. Neuroblasts arise from the neuroectoderm and acquire unique fates based on the positions in which they are formed. Previous work has identified six genes that pattern the dorsoventral axis of the neuroectoderm: Drosophila epidermal growth factor receptor (Egfr), ventral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 165 شماره
صفحات -
تاریخ انتشار 2016